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The magnitude of heavy-ion beam loss at the relativistic heavy ion collider~RHIC! and the large hadron
collider ~LHC! due to Coulomb induced bound-electron–positron production and to Coulomb dissociation of
the nucleus is evaluated. With the nominal design parameters, the associated partial beam lifetime of RHIC
~assuming four intersection regions! is calculated as 7.7 h and that of LHC~one intersection region! as 5.3 h.
@S1063-651X~96!09510-4#

PACS number~s!: 29.27.2a, 25.75.2q, 34.90.1q

I. INTRODUCTION

In ultrarelativistic heavy-ion colliders such as the relativ-
istic heavy ion collider~RHIC! and the large hadron collider
~LHC! there are two Coulomb induced processes occurring
during beam crossing that provide stringent limits on the
beam lifetime: bound-electron–positron pair production and
dissociation of the nucleus. Both of these processes occur for
ion trajectories of large enough impact parameter that there
is no nuclear overlap of the colliding ions. In both processes
each ion may be viewed in its own rest frame as being acted
on by the Lorentz transformed Coulomb field generated by
the other ion. In the first process an electron is produced in a
bound state of the ion, thereby changing the charge of the ion
and causing it to fall out of the beam. In the second process
the Coulomb force dissociates the nucleus itself and the frag-
ments fall out of the beam. Each of these processes has a
cross section many times the geometric cross section for the
collisions of Au1 Au at RHIC or Pb1 Pb at LHC, and it
therefore turns out that these two Coulomb processes provide
the primary limitation on beam lifetime. Continuum pair-
production, in spite of its large cross section, does not cause
beam deterioration, since~i! the average energy-momentum
loss is only a minor fraction of the bunch dispersion and~ii !
the r.f. acts to maintain the bunch.

In this paper we present comparative calculations of par-
tial beam lifetimes due to Coulomb induced processes for the
designed 100 GeV3 100 GeV Au1 Au collisions at RHIC
and 2.76 TeV3 2.76 TeV Pb1 Pb collisions at LHC. In
Sec. II we briefly review the results of our previous calcula-
tions of bound-electron–positron pair cross sections as ap-
plied to RHIC and LHC. In Sec. III we present the main
calculations of this work: an evaluation of the Coulomb dis-
sociation cross sections at RHIC and LHC based on an
‘‘equivalent photon’’ picture of the interaction combined
with experimentally determined nuclear photoelectric cross
sections that have been reported in the literature by various
groups over many years. In Sec. IV we discuss formulas for
the beam lifetimes, gather the design parameters, and calcu-
late the partial beam lifetimes. In Appendix A we discuss in

some detail the justification of ignoring higher order terms
that are appreciable at small impact parameters in our Cou-
lomb dissociation calculations of Sec. III. Appendix B re-
views the damping mechanism that enters importantly at
small impact parameters where the interaction is strong
enough to invalidate a perturbational treatment. By summing
a subset of terms, a prescription for dealing with the damping
problem follows, and is used in Sec. III to make the small
but necessary correction.

II. BOUND-ELECTRON –POSITRON PAIR PRODUCTION

We have shown@1# that in the ultrarelativistic limit the
total perturbative cross section in Pb1 Pb reactions for pro-
ducing a positron and an electron in an orbit about one of the
ions is given by the expression

spert514.3lng231 barns, ~1!

whereg is the effective relativisticg of one ion seen in the
rest frame of the other ion.g is 2.33104 for RHIC and
1.73107 for LHC. Since the perturbative treatment is invalid
at small impact parameters a full coupled channel calculation
was carried out to smoothly connect with the perturbative at
larger impact parameters. The nonperturbative enhancement
for relatively small impact parameters adds an energy-
independent contribution of only about 7 barns to the previ-
ous expression and we have

spair514.3lng224 barns ~2!

for Pb1 Pb. To obtain cross sections for other colliding ions
one recalls that the charge dependence goes approximately as
Z6.7, at least for ion pairs that range from iodine to uranium.
TheK-electron–positron cross section is calculated to be 93
6; 5% barns for Au1 Au at RHIC and 2146; 5% barns
for Pb 1 Pb at LHC. Finally, the production of non-
K-electron positron pairs is estimated to add approximately
another 25%6 5% to the cross section, giving us 1176 7%
barns for RHIC and 2686 7% barns for LHC.

III. COULOMB DISSOCIATION

The cross section for heavy-ion dissociation is approxi-
mated ~to within higher orders in 1/g) by the usual
Weizsacker-Williams expression~for a review see Bertulani
and Baur@2#!
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sph(v) is the photon cross section and is weighted by the
energy dependent impact parameter integral over the square
of the Bessel function. The approach, data sources, and
methodology are much as in an earlier report@3# covering
Coulomb dissociation at RHIC. The impact parameter range
is restricted to values above the grazing value,b0, thereby
making a cut to eliminate the strong force nuclear interac-
tions, which are counted separately. Theb0 is taken to be at
just over twice the nuclear radius; since theb0 dependence is
weak we take it to be 15 fm for both Au and Pb. Appendix A
provides some detailed discussion of corrections to the
Weizsacker-Williams formulation that depend on the struc-
ture of the target nucleus, and, in particular, shows the small-
ness of the higher order terms not included in Eq.~3!. There
is implicit in Eq. ~3! also an assumption that the probability
of an ion dissociating is significantly less than unity for all
impact parameters that contribute since it is an approximate
perturbative form. But, as we will see later, our calculated
first order probabilities go to unity near the grazing impact
parameter. Therefore, we will use an appropriately modified
expression for the cross section in the actual calculations
described below. However, it is instructive to begin by ana-
lyzing thev andb dependence of the cross section in terms
of the approximately correct Eq.~3!.

The impact parameter integral that appears in Eq.~3! may
be carried out analytically,

E
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`

bdbK1
2S bv

g D5~b0
2/2!FK0S b0vg DK2S b0vg D

2K1
2S b0vg D G , ~4!

and the right-hand side may then be approximated very ac-
curately forb0v/g,1 to yield

E
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b0v
D2gEuler20.5G
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v2lnS 0.681gb0v
D . ~5!

Putting in the factor of\c explicitly we obtain the familiar
form

sdis5
2aZp
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p E dv

v
sph~v!lnS 0.681\cg
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D . ~6!

The lower limit of thev integration is the neutron sepa-
ration energy (v thresh58.1 MeV for Au; 7.4 MeV for Pb!.
The situation at the high energy end of the integral is clear
and straightforward. The approximate Eq.~5! neglects terms
in (b0v/\cg)2. For v large enough that the difference be-
tween the two expressions is non-negligible~where the argu-
ment of the logarithm approaches unity!, the contribution to
the integral is relatively insignificant. At that point the exact
expression, Eq.~4!, has become very small and is falling
exponentially with v: it effectively cuts off at

v50.681\cg/b0. There is no difficulty with use of the exact
form where necessary, but the approximation is very useful
at low v.

To address the unitarity problem, we recall that the fun-
damental formulation is in terms of a probabilityP(b) which
is summed over impact parameters and energy to give the
total cross section,

sdis52pE
b0

`

P~b!bdb. ~7!

The first order probability of dissociationP1(b) ~the sub-
script is added here to emphasize the perturbational aspects!
is that given by the Weizsacker-Williams approximation,

P1~b!5
aZp

2

p2g2E dvvsph~v!K1
2S bv

g D , ~8!

wheresph is understood to be the usual one-photon function.
For bv/g!1, K1

2.(g/bv)2, and the 1/b2 dependence
makes the interaction large at smallb; further the magnitude
is increased for smallb by sph contributing up to very large
values ofv before exponential cutoff byK1 at bv/g;1; at
the largest values ofb only the lowest energy part ofsph
contributes.

Appendix B reviews the arguments for the introduction of
the damping required to insure unitarity by the simple and
plausible expression

P~b!→12exp„2P1~b!…. ~9!

In the calculations we report on below, Eq.~9! was utilized,
and thesdis, Eq. ~7!, evaluated numerically.

The values forsph(v) were taken directly from experi-
ment wherever possible, and interpolated as needed. In the
region of the giant dipole resonance, measurements were
made for both Au and Pb targets by Veyssie`re @4# et al. from
the neutron separation threshold~8.1 MeV for Au; 7.4 MeV
for Pb! up to 25 MeV and the data fitted to Lorentz shapes,
and we have used these fits forsph(v) in this region. For the
range 25 MeV<v< 103 MeV, the work of Lepreˆtre @5#
et al.was used. These data are for208Pb andsph was scaled
as 197/208 to obtain the Au values. For the range 103 MeV
<v< 440 MeV the Pb data of Carlos@6# et al. were used
and again scaled for the Au calculations. Forv values in the
range 440 MeV<v< 2 GeV there are no experimental
measurements ofsph for Au or Pb, and so we used scaled
values of the (g,p) @7# and (g,n) @8# experimental cross
sections of Armstrong et al., i.e., sph(v)
5ZTsg,p(v)1(AT2ZT)sg,n(v) (T5 target!. For the range
2 GeV <v< 16.4 GeV the Au data of Michalowski@9#
et al. and Pb data of Caldwell@10# et al. were interleaved
with suitableZ scaling.

In the region above 16.4 GeV there are no systematic
sph data for heavy targets, and above 17.84 GeV no (g,n)
data. We therefore must use (g,p) data scaled by an effec-
tive number of nucleons. The data of Michalowski@9# and
the data of Caldwell@10# indicate that forv values greater
than 17.84 GeV it is necessary to multiplyATsg,p by a shad-
owing factor to take into account the fact that not all nucle-
ons contribute to the photonuclear cross section. Based on
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the data at highestv of these two data sets we take the
shadowing factor to be 0.65, a value consistent with the ex-
perimental shadowing factor for Pb at 60 GeV@11#. For
v>18 GeV the (g,p) cross sections are smooth and flat with
only a gentle rise with increasingv. The data have been very
successfully described by a Regge theory parametrization
@12#. More recent cross-section measurements in the region
v520 000 GeV@13–15# are also consistent with the Regge
parametrization. Therefore abovev516.4 GeV we make use
of the Regge parametrization formula scaled by the shadow-
ing factor ~0.65! times the number of nucleons. Figure 1
summarizes this experimental input to our calculations for
the Au1 Au case.

In Table I, results for the dissociation cross section are
presented as a function of an upper limit ofv,vmax, to il-
lustrate scaling between the two machines at lower energy
and the relative weighting of the very high energy equivalent
photons~of which we know the least!. At lower values of
vmax the scaling between RHIC and LHC is approximately
described by Eq. ~6!: sdis scales roughly as
@(82/79)2(208/197)lng#, 1.9. Due to the much higher effec-
tive g of LHC there are significant but minor contributions,
;10%, to the integral Eq.~6! from values ofv above 18
GeV.

The total dissociation cross section of 220 barns for Pb1

Pb at LHC is more than twice the 95 barns of Au1 Au at
RHIC. At RHIC energies the dissociation cross section for
Pb1 Pb is calculated as 110 barns.

The difference betweenP(b) of Eq. ~9! and P1(b) is
significant near grazing impact parameters, as is illustrated in
Fig. 2. In factP1(b) is greater than unity forb less than 14.5
fm at RHIC and forb less than 17.5 fm at LHC; the lower
limit b0515 fm means inclusion of some of the parameter
range which requires damping. However, by far the largest
part of the cross section builds up from impact parameters
large enough that there is no significant difference between
P(b) andP1(b): the 1/b falloff in the cross-section integral
does not completely cut off until about 1027 cm at RHIC or
until about 1mm at LHC. To judge sensitivity to our various
assumptions, note the following: use of the first order expres-
sion Eq.~8! rather than Eq.~9! leads to a cross section only
3 barns higher for Au1 Au at RHIC and 6 barns higher for
Pb1 Pb at LHC. Settingb0 equal to 17 fm rather than the 15
fm of these calculations only reduces the cross section by
about 1 barn for RHIC and by 3 barns for LHC.

Given the extrapolations made necessary by the absence
of applicable data, a completely reliable error estimate is
made difficult. However, since the lower energies are heavily
weighted, we can rely on the experimental errors for the
photonuclear cross sections and assign a 5% error. To this

FIG. 1. Photonuclear absorption cross section
taken from the work of Refs.@3–14# as utilized
for these Au1 Au Coulomb dissociation calcu-
lations.

TABLE I. Dissociation cross sectionsdis ~in barns! at RHIC and LHC.

vmax ~MeV! sdis(vmax) sdis(vmax)
~Au 1 Au at RHIC! ~Pb1 Pb at LHC! Ratios

25 65 127 2.0
103 70 139 2.0
440 82 166 2.0
2000 90 187 2.1
17840 94 200 2.1
` 95 220 2.3
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we add a 2% error from the high energy regions, leaving us
with a quadratically combined 5.5% error to the overall cross
sections. We have thensdis59565b for RHIC, and
220612b for LHC. We note the agreement with the evalua-
tion of Vidović, Greiner, and Soff@16#.

IV. BEAM LIFETIMES

In Table II we gather together the ingredients for the com-
putation of the partial beam lifetimes due to the Coulomb
processes@17,18#. The equation for the partial beam loss
may be written

dh

dt
52NILsc , ~10!

whereNI is the number of intersection regions in the col-
lider, h is the number of ions in the beam,L is the instan-
taneous luminosity, andsc is the sum of the Coulomb cross
sectionssdis and spair. sc5212610b ~RHIC!, 488 622b
~LHC!. Since the luminosity is proportional to the product of
the ions in each beam orh2, the solution to Eq.~8! may be
written

h5
h0

11
1

2
lt

, ~11!

where

l522S dh

dt D
0
Yh0 5 2S dLdt D

0
YL0 ~12!

in terms of the initial values ofh, L and their first deriva-
tives. From Eq.~10! we also have

l52
NIL0sc

h0
. ~13!

The time development of the luminosity is then

L5
L0

S 11
1

2
lt D 2 . ~14!

Since at moderately short times,lt!1,

1

S 11
1

2
lt D 2 .e2lt, ~15!

it has become conventional to define a half-life in terms of
l as if there were exponential decay:

TL0
1/25

ln 2

l
. ~16!

Note, however, that the drop-off described by Eqs.~11! and
~14! is slower than exponential. Note also that the half-life of
the beam (h) is twice that of the luminosity (L).

For the stated parameters, the partial half-lives due to
Coulomb interactions are 45% longer for RHIC~7.760.4 h!
than for LHC~5.360.2 h!. Although the luminosity for LHC
is twice that of RHIC, the four intersections of RHIC versus
one for LHC give RHIC twice as many~hadronic! interac-
tions per unit time. Note also that we are comparing initial
luminosities; average luminosities would be somewhat
smaller for both machines.

FIG. 2. Probability of Coulomb dissociation as a function of
impact parameter. The dashed lines are for RHIC, dotted for LHC.
The curves that turn over at smallb areP(b), the ones that go to
unity areP1(b) ~see text!.

TABLE II. Beam lifetimes at RHIC and LHC.~Data from Refs.@15# and @16#.!

RHIC LHC

Energy 100 GeV3 100 GeV 2.76 TeV3 2.76 TeV
Beam Au1 Au Pb1 Pb
geff 2.33104 1.73107

LuminosityL0 0.8431027/cm2 sec 1.9531027/cm2 sec
Number of ionsh0 5.731010 5.231010

Intersections NI 4 1
sdis 95 barns 220 barns
spair 117 barns 268 barns
l 0.09/h 0.13/h
TL0
1/2 7.7 h 5.3 h
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APPENDIX A: THE WINTHER-ALDER
CORRECTION TERMS

The Weizsacker-Williams formalism follows from a num-
ber of simplifying approximations:~i! unperturbed straight
line trajectories of the heavy ions;~ii ! very high ion energies
that validate the expansion in powers of 1/g and the discard
of all but the leading terms;~iii ! neglect of the internal trans-
verse dimensions,r, of the excited target system relative to
that of the projectile’s impact parameter,b. It is this last
assumption that is not valid for impact parameters of the
order of the target system dimensions, and the Winther-Alder
formalism @19# takes that into account via a full multipole
expansion of the interaction.

Their results can also be obtained by expansion in powers
of r/b of the perturbative transition amplitude, so that the
connection with the usual Weizsacker-Williams form is im-
mediately apparent. In the limit of largeg, the perturbative
transition amplitude is given by

aof~b!

52aZpE dtc
f
*
jW•~bW 2rW !

ubW 2rW u
c0e

ivzH 1g K1S U bW 2rW

g
Uv D J ;
~A1!

here all quantities and functions are evaluated in the rest
system of the target, so that nonrelativistic nuclear physics
applies; jW is the electromagnetic current;bW is the impact
vector that lies in thex2y plane orthogonal to the ion tra-
jectories ẑ; v the wave-number (Ef2E0)/\c. K1 is the
modified Bessel function, whose asymptotic behavior is

K1~x!5H 1

x
1O~x!, x!1

S p

2xD
1/2

e2x, x@1.

~A2!

The Weizsacker-Williams result follows immediately on go-
ing to the very largeg limit for K1 and dropping powers of
r/b:

aof
~0!~b!52aZpE c

f
* jW•b̂eivzc0F1g K1S vb

g D Gdt

>
2aZp
vb E c

f
* jW•b̂eivzc0dt. ~A3!

The matrix element is recognized as that of a photon pro-
cess except that the transverse polarization vector,ê, is re-

placed by the transverse impact vectorb̂5bW /b. As in photon
processes the matrix element can be separated into a sum of

different multipoles. In the long-wavelength limit, which is
particularly useful here, the leading terms of the multipole
expansion follow from expansion of the retardation factor,

E c
f
* jW•b̂eivzc0dt5E c

f
* jW•b̂~11 ivz••• !c0dt,

~A4!

thus

E c
f
* jW•b̂c0dt5aE1 ~A5!

and

ivE c
f
* jW•b̂zc0dt5

iv

2 E c
f
* ~ jW3rW !•~bW 3 ẑ!c0dt

1
iv

2 E c
f
* @~ jW•b̂!~rW• ẑ!

1~ jW• ẑ!~rW•b̂!#c0dt, ~A6!

5aM11aE2 . ~A7!

The electric quadrupole,aE2, contribution is most easily rec-
ognized in terms of the simple decomposition~take b̂ as the
x axis!,

F j xz1 j zx

2 G52
1

2
@ jW ^ rW#J52,m5111

1

2
@ jW ^ rW#J52,m521 .

~A8!

The^ symbol denotes the tensor combination defined by the
subscripts. We will not need higher order multipoles here.

The first order inr/b adds toa
of

(0)(b),

a
of

~1!~b!5
2aZp
vb E c

f
* F2 j •rW v

vb
1
2~ jW•b̂!~rW •b̂!v

vb
Geivzc0dt,

>
2aZp
vb E c

f
* F2 jW•rW v

vb
1
2~ jW•b̂!~rW •b̂!v

vb
Gc0dt.

~A9!

The operator in the bracket can be usefully rewritten as

1

vb F2~ j x1 i j y!

A2
~x1 iy !v

A2
2

~ j x2 i j y!

A2
~x2 iy !v

A2 G ,
~A10!

and so is recognizable as a sum of (m512) and
(m522) components; more to the final point, it is just

1

vb
@ jW ^ rW#J52,m5122

1

vb
@ jW ^ rW#J52,m522 . ~A11!

Therefore, these terms are weighted by (2/vb), relative to
them561 terms of order (r/b)1. Since the different mul-
tipoles and differentm components add incoherently, there is
thus added to the familiar lowest order transition probability,
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P~0!~b!5E 1
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2vsph~v!F1g K1S bv

g D G2dv

>E 1

p2aZp
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v

1

b2
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the next order

P~1!~b!5E 1

p2aZp
2vsph,E2~v!

4

~vb!4
dv. ~A13!

The quantitysph,E2 is made up of the isoscalar plus the
isovector electric quadrupole portion of the full photon spec-
trum.

As estimates of the electric quadrupole excitations that lie
above nuclear separation energies we use the giant isoscalar
and isovector electric quadrupolar resonances. In208Pb the
isoscalar strength is believed to lie at about 11 MeV, below
the giantaE1; the isovector strength is believed to be above
the giantaE1 at about 20 MeV@20#. For our purposes here
we assume that the strengths are given by the energy-
weighted sum-rule:

E sE2dv;
~2p!2

40

\2

2m
A~vR!2, ~A14!

for the isoscalar and isovector components.@The energy-
weighted sum-rule foraE1 is (2p)2a(\2/2m)(NZ/A).#

Since the Winther-Alder correction is appreciable for low
energies, smallvR, it is most useful to compare the
P(1)(b) correction with just the giantaE1 resonance contri-
bution toP(0)(b). As an order of magnitude estimate then

P~1!~b!/PE1
~0!~b!;E 4sE2~v!

v3b4
dvY E sE1~v!

v

1

b2
dv

;
1

10

vE1

vE2

R2

b2
A2

NZ
. ~A15!

At the minimum impact parameterb52R, the ratio is
1
40 (vE1 /vE2)(A

2/NZ);0.14 for the isoscalaraE2, and
;0.26 for the isovector. However, this overstates the overall
importance; the ratio of the impact parameter integrated val-
ues, which determine the observable heavy ion cross-
sections, is

E
2R

`

P~1!~b!d2bY E
2R

`

PE1
~0!~b!d2b

;
1

80

vE1

vE2
Y lnS g

2RvE1
D . ~A16!

For ag;23104 the logarithm is;10, so that the relative
contribution is of order 0.2%; since the low energyaE1 con-
tribution is of the order of half the total electromagnetic dis-
integration cross-section it is clear that we can ignore these
contributions, overall of the order of 0.1%, and well below
the precision needs.

APPENDIX B: DAMPING

Obviously the unitarity problem points up the inadequacy
of the lowest order~in Za) perturbation theory, and demands
the damping produced by higher orders. Fortunately the dif-
ficulty is present only over the small range of impact param-
eters from grazing at 15 fm to; 50 fm. As we have seen in
the numerical computations, this region contributes relatively
little to the overall result: using the perturbative expression
Eq. ~8! rather than the unitarity corrected Eq.~9! results in
225 barns rather than 220 for LHC and 98 barns rather than
95 for RHIC. We are thereby able to proceed by a rough
approximation to the full damping problem.

This approach to the damping problem has been intro-
duced@21# into the problem of colliding heavy ions to deal
with that occurring in calculation of multiple pair production
by energetic heavy ions. The procedure is based on the in-
dependence of the different pairs created — independent of
each other via any direct interaction and not coupled through
any perturbation of the ion motion by the creation of the
pairs. The latter assumption is justified by the very large
momentum of the ions,gAMp, compared to the pair mo-
menta of ordermec

2lng. The neglect of interactions between
pairs can be seen as the neglect of ordera corrections rela-
tive to orderZiona. The results follow via a restricted sum-
mation of higher orders that consist of any number of pair
creations and annihilations in all possible sequences. Each
pair, real or virtual, is taken as independent, ignoring Pauli
blocking or other interactions.

The effective Hamiltonian may be seen as describing in-
dependent modes that are each capable only of creation from
and annihilation back to a ground state independent of the
number, nature, or degree of excitation of other modes. The
probability of creatingN pairs may then be written in terms
of the lowest order,P1(b),

N-pair Prob5@P1~b!#Nexp„2P1~b!…/N! ~B1!

and the summed probability is just

12exp„2P1~b!…. ~B2!

A like solution to multiple very low energy photon~bo-
son! production in charged particle reactions is a textbook
discussion@22#. Excitation of a harmonic oscillator by a lin-
ear perturbation@23# is also describable by a Poisson prob-
ability distribution, and a summed probability of the expo-
nential form Eq. ~B2!. Translation of the procedure to
nuclear excitations is clearly not immediate since the as-
sumptions of independence of nuclear modes and indepen-
dence of the base state upon which an excitation is built are
not accurate. However, it can be a qualitatively useful
method. The important nuclear modes are to be taken as
consisting of the following.

~i! The giant multipoles, of which only the giantaE1 will
be critical. The broad, phenomenologically known multipole
is taken as a continuum distribution of sharp modes whose
strengths are such as to describe the width and peak energy.
The sharp modes are the analogs of the pairs or photons of
the previous discussion. The experimental demonstration of
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the Brink hypothesis, which asserts that all states equally
support giantaE1 excitations, provides a conceptual base.

~ii ! The individual nucleon modes, where a photon inter-
acts principally with individual nucleons with only minor
modification by the surrounding nuclear inhabitants.

Since the contributions from the lower energy excitations,
15–40 MeV, can be attributed to the first class, and the
higher energy excitations to the second, a takeover of the
formalism appears reasonable with the damping form of Eq.
~9!.
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@16# Mario Vidović, Martin Greiner, and Gerhard Soff, Phys. Rev.

C 48, 2011~1993!.
@17# RHIC Design Manual, BNL-52195~1989!.
@18# LHC Conceptual Design, CERN/AC/95-05~LHC! ~1995!.
@19# A. Winther and K. Alder, Nucl. Phys.A319, 518 ~1979!.
@20# D. S. Dale, R. M. Laszewski, and R. Alarcon, Phys. Rev. Lett.

68, 3507~1992!.
@21# G. Baur, Phys. Rev. A44, 4767~1991!; M. J. Rhoades-Brown

and J. Weneser,ibid. 44, 330 ~1991!; Ch. Best, W. Greiner,
and G. Soff,ibid. 46, 261 ~1992!; J. Eichler and W. E. Mey-
erhoff,Relativistic Atomic Collisions~Academic Press, 1995!,
Sec. 10.4.2.

@22# V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevski,Relativ-
istic Quantum Theory I~Pergamon Press, 1994!, Sec. 95.

@23# E. Merzbacher,Quantum Mechanics, 2nd ed.~Wiley, 1969!,
Sec. 15.9.

54 4239HEAVY-ION PARTIAL BEAM LIFTIMES DUE TO . . .


